• Users Online: 237
  • Print this page
  • Email this page
  • Email this page
  • Email this page
  • Email this page


 
 
Table of Contents
CORRESPONDENCE
Year : 2022  |  Volume : 40  |  Issue : 1  |  Page : 50-51

Laser-induced mottled hypopigmentation successfully treated with a combined regimen of topical calcineurin inhibitors and fractional CO2 laser


1 Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
2 Department of Dermatology, Incheon St. Mary's Hospital; Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea

Date of Submission16-Jul-2021
Date of Decision11-Jan-2022
Date of Acceptance17-Jan-2022
Date of Web Publication30-Mar-2022

Correspondence Address:
Dr. Hei Sung Kim
Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul 06591
Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ds.ds_2_22

Rights and Permissions

How to cite this article:
Lee SH, Cho M, Han YJ, Woo YR, Cho SH, Lee JD, Kim HS. Laser-induced mottled hypopigmentation successfully treated with a combined regimen of topical calcineurin inhibitors and fractional CO2 laser. Dermatol Sin 2022;40:50-1

How to cite this URL:
Lee SH, Cho M, Han YJ, Woo YR, Cho SH, Lee JD, Kim HS. Laser-induced mottled hypopigmentation successfully treated with a combined regimen of topical calcineurin inhibitors and fractional CO2 laser. Dermatol Sin [serial online] 2022 [cited 2022 May 22];40:50-1. Available from: https://www.dermsinica.org/text.asp?2022/40/1/50/341353



Dear Editor,

Postinflammatory hypopigmentation is one of the most significant complications caused by laser toning. The excessive amount of energy exerted on a pigmented lesion can destroy melanosomes and even melanocytes. Therefore, unlike other complications, some hypopigmented lesions are refractory to treatment. Herein, we report our experience treating laser-induced hypopigmentation with a combined regimen of topical calcineurin inhibitors (TCIs) and a fractional carbon dioxide (CO2) laser.

A 58-year-old woman visited our department with mottled hypopigmentation of the face [Figure 1]. The patient had undergone laser toning 4 years previously to treat diffuse hyperpigmentation of the face. Laser toning was performed more than 20 times at weekly intervals, and erythema and petechiae were used as endpoints. After the mottled hypopigmentation occurred, the laser treatment was continued at a local clinic in an attempt to correct it, but there was no improvement. The patient visited our hospital when no improvement had taken place after 3 months. A skin biopsy from a white spot demonstrated the absence of melanin and melanocytes along with inflammatory cell infiltration and confirmed the diagnosis of laser-induced postinflammatory hypopigmentation. The hypopigmented macules were irradiated with a fractional CO2 laser (COPRO2, AMT Engineering Co., Ltd., Gyeonggi, Korea). The initial dosage was 7 mJ and was gradually increased to 11 mJ. Topical tacrolimus (0.03% Protopic®, LEO Pharma, Ballerup, Denmark) was applied to the hypopigmented macules twice daily. Soon after, the patient complained a mild burning sensation, and the tacrolimus was replaced with topical pimecrolimus (Elidel® Cream 1%, Novartis Pharmaceuticals Corp, East Hanover, NJ, United States). To decrease the contrast between hyper and hypopigmented areas, we used a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser treatment at 0.8–1.4 J/cm2 with an 8-mm spot size. A combination of hydrocortisone, hydroquinone, and tretinoin cream (Melanon cream, Dong-A Pharmaceutical, Seoul, Korea), was applied over the hyperpigmented lesion once daily. The patient received 22 total sessions of this combined regimen of lasers at an interval of 4 weeks. The hypopigmented macules markedly decreased in size and blended well into the surrounding skin. The patient was satisfied with the outcome after the 22nd laser treatment [Figure 2].
Figure 1: Hypopigmentation that initially presented as multiple, mottled macules on the entire face.

Click here to view
Figure 2: Improvement in the hypopigmentation following 22 sessions of laser treatments.

Click here to view


Laser-induced hypopigmentation is one of the most challenging laser complications due to its persistence and resistance to treatment. The cumulative phototoxic damage caused by repetitive laser treatment to melanocytes eventually results in melanocytopenia such as vitiligo.[1],[2] Various therapeutic modalities have been attempted, including laser resurfacing, dermabrasion, skin grafting, and phototherapy.[3] As with vitiligo, combined therapy is thought to be necessary for these patients due to the melanocytopenic histology and treatment-refractory nature.

TCIs have also been widely used in hypopigmented conditions, including vitiligo. TCI possesses a dual mechanism of action. First, TCIs inhibit cytotoxic CD8+ T-cells by blocking calcineurin-mediated phosphorylation of the nuclear factor of activated T-cells. They also induce repigmentation by stimulating melanocyte proliferation and migration and melanin synthesis.[4]

Fractional CO2 laser is a well-known device for laser resurfacing.[5] This device creates microscopic holes in a pixilated pattern using thermal energy surrounded by a thin layer of coagulated tissue called the microscopic treatment zone.[5] Collagen coagulation immediately induces tissue contraction, so the size of the irradiated area can be seen.[6] The microscopic holes can also enhance the percutaneous delivery of topical agents.[7] During the wound healing process, various cytokines are secreted that can promote the differentiation and migration of melanocytes.[8] Therefore, despite concerns about the Koebner phenomenon, fractional CO2 laser treatment has been applied to both vitiligo and laser-induced hypopigmentation with promising effects.[5],[8]

In conclusion, a combined regimen of TCIs and fractional CO2 laser was an effective means of treatment for postinflammatory hypopigmentation, even in melanocytopenic lesions. The excellent cosmetic results achieved in this case support the use of this particular modality. However, further controlled studies are necessary to determine the true efficacy and to establish the optimal treatment settings.

Declaration of patient consent

The authors certify that they have obtained all appropriate consent forms for the use of patient images and other clinical information to be reported in the journal. The patient understands that her name and initials will not be published and also that due efforts will be made to conceal her identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Kim T, Cho SB, Oh SH. Punctate leucoderma after 1,064-nm Q-switched neodymium-doped yttrium aluminum garnet laser with low-fluence therapy: Is it melanocytopenic or melanopenic? Dermatol Surg 2010;36:1790-1.  Back to cited text no. 1
    
2.
Jang YH, Park JY, Park YJ, Kang HY. Changes in melanin and melanocytes in mottled hypopigmentation after low-fluence 1,064-nm Q-switched Nd: YAG laser treatment for melasma. Ann Dermatol 2015;27:340-2.  Back to cited text no. 2
    
3.
Tierney EP, Hanke CW. Treatment of CO2 laser induced hypopigmentation with ablative fractionated laser resurfacing: Case report and review of the literature. J Drugs Dermatol 2010;9:1420-6.  Back to cited text no. 3
    
4.
Lee JH, Kwon HS, Jung HM, Lee H, Kim GM, Yim HW, et al. Treatment outcomes of topical calcineurin inhibitor therapy for patients with vitiligo: A systematic review and meta-analysis. JAMA Dermatol 2019;155:929-38.  Back to cited text no. 4
    
5.
Hantash BM, Bedi VP, Kapadia B, Rahman Z, Jiang K, Tanner H, et al. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med 2007;39:96-107.  Back to cited text no. 5
    
6.
Ross EV, Yashar SS, Naseef GS, Barnette DJ, Skrobal M, Grevelink J, et al. A pilot study of in vivo immediate tissue contraction with CO2 skin laser resurfacing in a live farm pig. Dermatol Surg 1999;25:851-6.  Back to cited text no. 6
    
7.
Haedersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR. Fractional CO (2) laser-assisted drug delivery. Lasers Surg Med 2010;42:113-22.  Back to cited text no. 7
    
8.
Kim HJ, Hong ES, Cho SH, Lee JD, Kim HS. Fractional carbon dioxide laser as an “Add-on” treatment for vitiligo: A meta-analysis with systematic review. Acta Derm Venereol 2018;98:180-4.  Back to cited text no. 8
    


    Figures

  [Figure 1], [Figure 2]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
References
Article Figures

 Article Access Statistics
    Viewed420    
    Printed10    
    Emailed0    
    PDF Downloaded52    
    Comments [Add]    

Recommend this journal